

Selenium concentration in milks

Maite Sanz Alaejos* & Carlos Díaz Romero

Department of Analytical Chemistry, Food Science and Toxicology, University of La Laguna, 38071 Spain

(Received 10 November 1993; revised version received and accepted 15 February 1994)

In this review article, papers on selenium concentrations in cow and human milk are reviewed in order to identify the main factors that affect these concentrations as well as the Se intake of lactating infants. Selenium intake and Se status of the mother seem to be the main factors that influence Se concentrations in human milk. The progression of lactation can diminish the Se concentrations in human milk. Most authors have reported Se levels in human milk greater than Se levels in available milk formulas for infants from the same country. Thus, higher Se intakes in the breast-fed infant than Se intakes in formula-fed infants have been observed. Also, the Se compounds in breast milk seem to be more biologically available for infant nutrition than those in formulas.

NOTATION

GSH-Px INAA	Glutathione peroxidase Instrumental neutron activation analysis
RNAA	Radiochemical neutron activation analysis
EAAS	Electrothermal atomic absorption
	spectrometry
HG-AAS	Hydride-generation atomic absorption spectrometry
SPF	Spectrofluorimetry
CG	Gas chromatography
HPLC	High performance liquid chromatography

INTRODUCTION

Interest in the role of Se in human nutrition is increasing, as more and more investigators realise the essential nature of this trace element to human health (Levander, 1987). Although interest in Se was initially caused by its potential toxicity (Wilber, 1980), more important is its deficiency in several geographical areas. Low Se intakes have been associated with Keshan and Kashin-Beck diseases, juvenile cardiomyopathies that occur in certain parts of China (Keshan Disease Research Group, 1979; Levander, 1987; Khan, 1989). There are many other diseases that have been related to Se deficiency. Epidemiological studies have shown a relationship between low Se intake and increased risk of cancer (Clark, 1985; Combs & Clark, 1985; Yu et al., 1985; Levander, 1987) or ischemic heart disease (Virtamo et al., 1985; Levander, 1987; Bukkens et al., 1990; Oster & Prellwitz, 1990).

*To whom correspondence should be addressed.

The main source of Se intake are foods. Milk of all animal species is notoriously low in trace elements (Picciano, 1985). Selenium concentration in milk is lower than the concentration of other essential trace elements (Cu or Zn) (Hatano et al., 1985). Breast milk may be the main source of Se for breast-fed infants. Therefore, the section of the population most vulnerable to Se deficiency includes infants receiving breast or formula milk containing very low levels of Se and patients on restricted long-term diets (Lane et al., 1981; Sando, 1989). Selenium requirements of children have been extrapolated from adult values on the basis of body weight, and an arbitrary factor allowed for growth. Thus, the Food and Nutrition Board (US) has proposed a lowest level of safe and adequate intake of Se for infants: 10 and 15 μ g/day for infants of 0-0.5 years and 0.5-1 years, respectively (Committee on Dietary Allowances, 1989).

In this paper, we review the main data published from 1975 to 1992 on Se concentrations in human milk and commercial milk adapted for human consumption. Also, Se intakes for lactating infants from different geographical areas have been included. Given their relevance we have included some data from earlier years.

ANALYTICAL CONSIDERATIONS

Sampling and storage

Milk samples must be collected via a mechanical pump according to the standard procedures described in the IAEA/WHO document (Parr, 1978). All sample collection equipment was plastic or, more specifically, polypropylene (Litov et al., 1989), acid-washed to prevent Se contamination. Care should be taken when sampling mature human milk for estimation of Se concentration (Smith et al., 1982) because, although these authors did not find differences in Se content throughout the day, samples should be collected from different feeds during the same day. Also, when possible, various samples were collected during the same feed (Vuori & Kuitunen, 1979; Clemente et al., 1982).

Milk or colostrum samples were freeze-dried (Binnerts, 1979; Varo & Koivistoinen, 1981; Polkowska-Motrenko et al., 1982) or frozen (Maus et al., 1980; Debski et al., 1987; Levander et al., 1987; Mannan & Picciano, 1987) in liquid nitrogen (Smith et al., 1982) or in solid carbon dioxide (Shearer & Hadiimarkos, 1975) immediately after sampling. Then the samples were stored at -14°C (Litov et al., 1989), at -18°C (Karlsen et al., 1981; Kumpulainen et al., 1983b; Varo et al., 1984), at -20°C (Smith et al., 1982), at -70°C (Debski et al., 1987; Mannan & Picciano, 1987), or kept in an ice bath (Smith & Picciano, 1986). Preservation of mature milk at -20°C decreased its GSH-Px activity linearly with time at a rate of 5.8 unit/ml/day (Hojo, 1986a). After thawing, the human milk samples were heated to 40°C and carefully mixed before analysis (Kumpulainen et al., 1983b). Also human and cow's milk and formula samples were dried in silica tubes for 24 h at 70°C and thereafter for 8 h at 100°C (Lombeck et al., 1978).

Sample treatment

For studying the distinct fractions of milk, diverse methods of fractionation have been applied. Skimmed milk has been prepared by centrifugation for 1.5 h at 4°C at 10000 g (Debski et al., 1987) or for 30 min at 2000 g (Avissar et al., 1991) or at 1500 g (Yoshida et al., 1981; Van Dael & Deelstra, 1989). After being centrifuged for 1 h at 120 000 g (4°C), the supernatant (whey) and pellet (mostly casein) fractions are obtained. After this, the samples have been dialyzed in membrane tubing with a molecular mass cutoff of 6-8 kDa for four days against deionized water (Debski et al., 1987). Also, the pH of the skimmed milk adjusted to 4.6 to precipitate caseins (Van Dael & Deelstra, 1989). CaCl₂ and rennin have been employed in order to precipitate casein at 37°C for 5 h. Afterwards the whey fraction was separated from the casein coagulum by centrifugation at 1000 g for 15 min. Trichloroacetic acid (TCA) was added to the whey fraction and the suspension was subsequently centrifuged to separate it into TCA-soluble and TCAinsoluble fractions. On the other hand, the precipitated casein was washed with NaOH solution, subsequently collected by centrifugation, and dried in a vacuum (Yoshida et al., 1981).

In the case of X-ray fluorescence, neutron activation analysis, and atomic absorption spectrometry with a graphite furnace, sample preparation can be kept to a minimum. So, the treatment of the sample was usually drying (Lombeck *et al.*, 1978) as no differences could be detected between the drying and ashing methods (Behne & Matamba, 1975). However, most techniques have used digestion as a sample treatment. Selenoorganocompounds in milk can resist oxidation except with HClO₄ mixture (Olson *et al.*, 1975; Nève *et al.*, 1982). However, other authors (Olson et al., 1975; Bunker & Delves, 1987; Charlot et al., 1989) do not find differences in the results when mixtures of HNO₃ and H_2SO_4 or HNO_3 , H_2SO_4 and $HClO_4$ are added. Other digestion procedures have been proposed, such as the addition of HNO_3 , H_3PO_4 and H_2O_2 in order to eliminate the need for a HClO₄ mixture (Reamer & Veillon, 1983; Macpherson et al., 1988). Recently, a somewhat revolutionary method was developed for the digestion of organic and inorganic matrices in biological fluids which involves the use of microwaves (Cornelis, 1991; Feinberg, 1991; LamLeung et al., 1991; Matusiewicz et al., 1991).

Instrumental determination

There are many available methods to determine Se. Four important methods may stand out for the analysis of Se in milk: Instrumental Neutron Activation Analysis (INAA), Spectrofluorimetry (SPF), Gas Chromatography (GC), and Atomic Absorption Spectrometry (AAS).

Spectrofluorimetric methods are well established. They are based on the measurement of the sensitive fluorescence of piazselenols derived from selenite. Thus, the digested samples must be treated with HCl, heating to reduce the selenate to selenite (Lalonde et al., 1982; Koh & Benson, 1983; Pettersson & Olin, 1991). Other reducing agents such as H_2O_2 (Michie et al., 1978) or hydroxylamine (Holynska & Lipinska-Kalita, 1977; Peters & Koehler, 1982) have been used. The optimum pH and temperature/time for the formation of a fluorescent piazselenol with DAN (2,3-diaminonaphthalene) was studied by several authors (Lalonde et al., 1982; Alfthan, 1984; Pettersson et al., 1988). In order to eliminate interferences, this complex was extracted with a hydrophobic solvent such as cyclohexane, toluene, benzene, chloroform, etc. Afterwards, the fluorescence $(\lambda_{ex} = 360 \text{ nm}, \lambda_{em} = 520 \text{ nm})$ was measured in a fluorescence spectrometer (Watkinson, 1966). In biological materials and for concentrations of Se < 0.3 mg/kgfluorimetry has been selected as a reference method, because of its high precision, low detection limit, and complete recovery (Table 1).

New HPLC methods coupled to fluorescence detection of the piazselenol complex are being developed. These methods can be applied to human milk or paediatric samples where small quantities may be available and subnanogram sensitivity is required (Vézina & Bleau, 1988; Handelman *et al.*, 1989). Also, these chromatographic methods show promise because of the fact that the different Se species present in milk could be separated and determined, which would be interesting for bioavailability studies.

INAA, if available, can be valuable as a reference for validating alternative analytical methods. In general,

sensitivity and precision of INAA are lower than fluorimetric methods (Table 1), and both are capable of producing unbiased results (Hevdorn & Griepink, 1990). However, INAA has several advantages with respect to fluorimetric methods. Thus, it is non-destructive and the only losses of concern are by escape of volatile compounds. The sample treatment can be reduced to a minimum. Exposure of the sample in a nuclear reactor for a few days yields only one long-lived isotope of Se, ⁷⁵Se. When the short-lived activation product ⁷⁷mSe was measured the time of analysis decreased significantly from three months to two days (Egan et al., 1977; Woittiez & Nieuwendijk, 1987). Also, this method can be combined with radiochemical separation with orthodiamines in order to eliminate interference (Kalouskova et al., 1989), but the RSD can increase (Sarudi et al., 1989).

Selenium determination in biological fluids in the subnanogram range by AAS can be performed using the graphite furnace (EAAS) and the hydride-generation techniques (HG-AAS) (McCarthy et al., 1981; Ringstad & Thelle, 1986). The two techniques (HG-AAS and EAAS) have been correlated satisfactorily (Oster & Prellwitz, 1982; Macpherson et al., 1988). The best absolute detection limit can be observed in EAAS but HG-AAS is faster and cheaper (Verlinden et al., 1981). An automated microtechnique for Se analysis, flow injection HG-AAS, is capable of performing a rapid and accurate Se determination at picogram levels in acid-digested biological fluids (Negretti de Brätter et al., 1990). The relatively poor precision, losses, and interference are the main problems of both methods. Some authors (Koh & Benson, 1983) have left out the previous digestion step in the EAAS technique. But most authors (Neve et al., 1980; Tôei & Shimoishi, 1981; Koops et al., 1989) prefer to digest the samples of milk, and after carrying out an extraction process in order to eliminate interference. In order to stabilize or reduce the volatility of inorganic Se compounds of digested samples for direct determinations by EAAS, the addition of various metallic salts has been proposed. Salts of nickel are commonly used (Alexander et al., 1980; Carnrick et al., 1983). Also, a Mg-Pd system or Pd alone has a substantial equalizing effect on the atomization temperature (Schlemmer & Welz, 1986; Charlot et al., 1989; Koops et al., 1989). The use of Zeeman-effect background correction is widely recommended in biological matrices where iron and phosphorus are also present (Koops et al., 1989; McMaster et al., 1990; Hoenig, 1991; Welz et al., 1983). In the HG-AAS technique, it is necessary to reduce, with borohydride, the selenate to selenite in the digested samples. Interferring ions in this step can be masked by addition of 1,10-phenanthroline, quinidine-8-ol or thiourea (Long & Yu, 1986).

Methodology available for the quantification of Se by GC was reviewed (Dilli & Sutikno, 1984b). In GC methods, digestion and reduction steps are necessary to determine Se in milk, as in fluorimetric methods. Afterwards the digested and reduced sample is treated with halogenated aromatic o-diamines to form piazselenols (Uchida et al., 1981; Dilli & Sutikno, 1984a). The selenium complex is extracted in organic solvent and measured by the sensitive GC method with an electron capture detector (Cappon & Smith, 1978; Uchida et al., 1981). However, the sensitivity of GC is not as good as in the latter methods, although the reported precision is lower than those. Also, some authors (Cappon & Smith, 1978) have observed incomplete recovery (Table 1).

SELENIUM IN MILK

Occurrence

The total Se content does not give information on the overall utilization or bioavailability of the element. Selenium in human milk and other animal milks was positively correlated with its protein content (Millar & Sheppard, 1972; Smith et al., 1982; Hojo, 1986b) and negatively correlated with its fat content (Hojo, 1986b). At least 8-12 selenoproteins could be identified after gel chromatography of dialyzed human milk (Debski et al., 1987). Skimmed milk contained 93% of the total Se, which is mainly protein-bound; k-casein was the protein richest in Se, followed by β -casein (Van Dael et al., 1991). Yoshida et al. (1981) have shown a major proportion of Se in the casein fraction of pasteurized bovine milk. The Se in the whey fraction is mainly in the free selenite form. Other investigators (Van Dael & Deelstra, 1989) have found especially, that β -lactoglobulin is a Se-rich protein, contributing up to 80% of the total Se content of the bovine whey. Separation treatment influences the Se content in each fraction obtained. So, only 1-3% of total milk Se remained in the lipid fraction after centrifugation. Approximately 20-28% of Se in milk was removed by dialysis but the loss of Se from dialysis was not uniform among fractions; there was a loss of 66% of the Se associated with the 10 kDa fraction in human milk. After ultracentrifugation, the supernatant fractions contained 62, 71, and 29% of the total milk Se collected from women, cows, and goats, respectively (Debski et al., 1987). Consequently, the pellet obtained from goat's milk contained 65% more Se than the pellet from human milk and 204% more than that from cow's milk (Debski et al., 1987).

The strong positive relationship (r = 0.81, p < 0.001) observed between Se concentration and GSH-Px activity of human milk suggests that a large portion of the Se in human milk is present as a part of this enzyme (Mannan & Picciano, 1987). This was verified by molecular sieve chromatography of human milk with GSH-Px and accounted for 15–30% of the Se in milk (Milner *et al.*, 1987). In cow's milk about 12% of Se was bound to GSH-Px (Hojo, 1982). Most of the GSH-Px activity was found in the fractions corresponding to 170 kDa and 96 kDa in milk from women, goat, and cow species examined (Milner *et al.*, 1987). There are two distinct forms of Se-dependent gluta-

	Table 1. Literature data on determination of Se in milks	lata on determin	ation of Se in milks		
Method	Sample treatment	Detection limit (ng/ml)	RSD % between-assay (within-assay)	Recovery %	Ref.
SPF	HNO ₃ /HClO ₄ digestion; HCl reduction; DAN; cyclohexane extraction	0.2 ng			Grant (1981)
SPF	HNO ₃ /HClO ₄ digestion; HCl reduction; EDTA, DAN, cyclohexane extraction		10 (2)	100 ± 2.2 (97-100)	Koh & Benson (1983)
SPF	HNO ₃ /HClO ₄ digestion; HCl reduction; EDTA, DAN, cyclohexane extraction		ŝ		Koops et al. (1989)
EAAS	HNO ₃ /HClO ₄ /H ₂ SO ₄ /H ₂ O ₂ digestion; NH ₂ OH reduction; 4-chloro-1,2-diaminobenzene; toluene extraction; Ni(NO ₃) ₂ modifier	50	4-0	102–107	Nêve <i>et al.</i> (1980)
EAAS with D ₂ lamp	HNO ₃ /HClO ₄ /H ₂ SO ₄ /H ₂ O ₂ digestion; HCl reduction; EDTA, Cu ²⁺ complexation; APDC-MIBK extraction	0.6	7.3	98.4	Kumputainen et al. (1983a)
	HNO ₃ /HClO ₄ /H ₂ SO ₄ /H ₂ O ₂ digestion; HCl reduction; Cu ²⁺ ; APDC-MIBK extraction			93.1	
	HNO ₃ /HClO ₄ /H ₂ SO ₄ /H ₂ O ₂ digestion; HCl reduction; EDTA, Ni ²⁺ complexation; APDC-MIBK extraction			82.1	
	HNO ₃ /HClO ₄ /H ₂ SO ₄ /H ₂ O ₂ digestion; HCl reduction; EDTA, Cu ²⁺ complexation; NaDDC-MIBK extraction			95.1	
EAAS with D ₂ lamp	HNO ₃ /HClO ₄ /H ₂ SO ₄ digestion; HCl reduction; EDTA, APDC-MIBK extraction; Cu ²⁺ modifier		12.1		Varo <i>et al.</i> (1984)
EAAS	HNO ₃ /HClO ₄ digestion; HCl reduction; DAN, cyclohexane extraction organic Ag-sulfonate/hydrocarbon oil	0.5	2		Norheim et al. (1983)
EAAS with D ₂ lamp	HNO ₃ /H ₂ SO ₄ digestion, urea; Triton X-100; PdCl ₂ as matrix modifier		20		Charlot <i>et al.</i> (1989)
EAAS, Zeeman	Triton X-100 dilution; $Pd/Mg(NO_3)_2$ as matrix modifier		18		Koops et al. (1989)
HG-AAS	Oxygen combustion/silicic acid; dissolution in acid medium; NaBH ₄	2 ng	1.6		Han <i>et al.</i> (1981)
HG-AAS with FIA	HNO ₃ /HClO ₄ /H ₂ SO ₄ digestion; HCl reduction; NaBH ₄	0.31	8-11		Negretti de Brätter et al. (1990)

Table 1. Literature data on determination of Se in milks

4

Lombeck et al. (1977); Lombeck et al. (1980)	Clemente et al. (1982)	Woittiez & Nieuwendijk (1987)	Polkowska-Motrenko <i>et al.</i> (1982)	Singh & Sawant (1987)	Shimoishi (1976) Tôci & Shimoishi (1981)	Stijve & Philippossian (1978)	Cappon & Smith (1978)	Dilli & Sutikno (1984a)
					94-106		75-90	
10	6.7	15		20	1.7		3.4	
	l ng/g	2 ng		at.	5 ng	5 ng/g	0.19 ng/g	S
Dried at 70°C, 24 h and at 100°C, 8 h; $5 \cdot 10^{13}$ n/cm ² · s, 48 h irradiation; 60–90 days of decay time	$2.6 \cdot 10^{12} \text{ n/cm}^2 \cdot \text{s}, 10-14 \text{ h irradiation}$	Lyophilization; $5 \cdot 10^{13}$ n/cm ² · s, 2 s irradiation; 5 s decay time; 10 s counting time	Lyophilization; oxygen flask combustion; HCI/H ₂ SO ₄ digestion; DDTC/toluene extraction; 2 · 10 ¹² n/cm ² · s, 20–40 h irradiation	Dried at 65°C; ethyl- α -isonitroso-acetoacetate precipit. HNO ₃ /HClO ₄ redissolution; $1 \cdot 10^{13}$ n/cm ² · s, 5–7 days irradiat.	HNO ₃ digestion; urea; HCl reduction; toluene extraction; 1,2-diamino-4-nitrobenzene or 1,2-diamino-3,5- dibromobenzene; toluene extraction	$HNO_3/Mg(NO_3)_2$ digestion; HCl reduction; urea; 1,2-diamino-4-nitrobenzene; toluene extraction	HNO ₃ digestion; urea; HCl reduction; 4-nitro- <i>o</i> -phenylenediamine; benzene extraction; MgSO ₄ /Florisil cleanup	HNO ₃ /HCIO ₄ digestion; HCl reduction; 4-trifluoromethyl- <i>o</i> -phenylenediamine; toluene extraction
INAA, Se ⁷⁵	INAA, Se ⁷⁵	INAA, Se ⁷⁵ , Se ^{77m}	RNAA, Se ⁷⁵	RNAA, Se ⁷⁵	GC-ECD	GC-ECD	GC-ECD	GC-ECD

Selenium concentration in milks

thione peroxidase in mammals, a cellular form (c-GSHPx) and an extracellular or plasma form (p-GSHPx) (Broderick *et al.*, 1987; Maddipati & Marnett, 1987; Takahashi *et al.*, 1987; Avissar *et al.*, 1989*a,b*). The two enzymes have different affinities for glutathione and hydroperoxides. Both p-GSHPx and c-GSHPx have four Se molecules, interact with lipid peroxides and H_2O_2 , and are the products of two different genes (Takahashi *et al.*, 1990; Avissar *et al.*, 1991). Thus, most, if not all, GSH-Px activity in milk is due to the p-GSH-Px form of the enzyme (Avissar *et al.*, 1991).

Levels in human milk

Table 2 shows the mean and range of Se concentrations in human milk from different parts of the world, also indicating, the number of samples analyzed, analytical method, some important descriptions and approximate year of the study. Most authors determine total Se levels because the normal sample treatment changes the initial composition of the milk. Studies in human milk from Japan (Shimoishi, 1976; Tôei & Shimoishi, 1981) determine the Se (VI) species, indicating that they constitute 30% of the total Se. The unit of concentration most used is $\mu g/litre$, although others have been used, such as pmol/g (Mangels et al., 1990), ng/litre (Higashi et al., 1983), µg/ml (Shimoishi, 1976; Tôei & Shimoishi, 1981), ng/g wet weight (Binnerts, 1979; Clemente et al., 1982; Robberecht et al., 1985; Tamari et al., 1990, 1991) or dry weight (Lombeck et al., 1977, 1978; Binnerts, 1979; Polkowska-Motrenko et al., 1982; Kumpulainen et al., 1983a), $\mu g/g$ wet weight (Norheim et al., 1983), µmol/litre (Koh & Benson, 1983). However, all concentrations were converted to $\mu g/litre$ by using a density of 1.034 (Iyengar, 1982) or a mean dryto-wet ratio of 0.12 (Cross et al., 1978; Lombeck et al., 1978; Iyengar, 1982).

Mature human milk can exhibit a wide variation in Se content due to geographical location. Shearer and Hadjimarkos (1975) have carried out an important study in 17 states across the USA, observing significantly higher concentration levels in high Se areas such as South Dakota compared to lower Se areas such as Ohio. Also, it was found that breast milk in a high Se area contained 283 μ g Se/kg which can provide 220 μ g Se/day for infants within the first year of age and is around 90 times the Se-intake supplied by breast milk in the Keshan disease area, where the Se concentration averaged 2.6 µg Se/kg (Keshan Disease Research Group, 1979a,b; Yang et al., 1989). In 26 lactating women and their infants from the Kathmandu valley of Nepal, Se daily intake is considered the second-lowest reported in the world. However, the concentrations in maternal and infant plasma, and breast milk are below normal (Reynolds et al., 1986). Kumpulainen et al. (1983b, 1984) suggest that maternal dietary Se intakes may be insufficient to maintain breast-milk Se concentrations at adequate levels for infants because Finland is a country with low-Se soils. Although some authors

(Levander et al., 1981, 1987; Higashi et al., 1983) did not find significant correlations between Se levels in breast milk and dietary Se intakes, others (Shearer & Hadjimarkos, 1975; Kumpulainen et al., 1985; Yang et al., 1989) claimed that the Se content in human milk reflected a different Se intake via food.

Most authors indicate that human milk Se concentrations are dependent on the maternal Se intake; consequently, Se in human milk must also be dependent on the Se status. Thus, correlational analyses were performed between maternal indices of Se status and milk indices. Strong positive relationships were observed between maternal plasma (Levander *et al.*, 1981; Mannan & Picciano, 1987), serum (Higashi *et al.*, 1983; Kumpulainen *et al.*, 1985) or whole blood (Williams, 1983) Se concentrations and Se in milk. Plasma activity of GSH-Px was also positively correlated with both milk Se concentration and activity of GSH-Px (Mannan & Picciano, 1987). However, erythrocyte Se content did not correlate with milk Se concentrations (r = 0.23, p:NS) (Mannan & Picciano, 1987).

Some authors (Levander *et al.*, 1987) indicated that there was a weak (r = 0.38) but statistically significant (p < 0.025) correlation between maternal plasma and milk. In contrast, other investigators found that the level of Se in serum (Higashi *et al.*, 1983) or plasma (Levander *et al.*, 1981) of lactating women was unrelated to the Se content of their milk. The ability to demonstrate a correlation between blood and breastmilk Se levels may be determined in part, by the form of dietary Se ingested by the mothers (Levander *et al.*, 1987).

Another important factor that seems to influence Se content in milk is the state of lactation. Thus, the mean content found in USA (18 μ g/litre) was lower than in North-West Germany (28 μ g/litre). This could be due to the different state of lactation (Lombeck et al., 1978) and/or different dietary Se intake. The 241 American women donating milk samples were from 17 to 869 days postpartum, with a median duration of 183 days, while most (88%) of the samples of mature milk from German women were collected from 11 to 60 days postpartum because of the usually short lactation time in this area (Lombeck et al., 1978). Mature human milk exhibited a Se content very much lower than that observed in colostrum milk (Grimanis et al., 1978; Lombeck et al., 1978; Smith et al., 1982; Higashi et al., 1983; Robberecht et al., 1985; Tamari et al., 1991). Also, the available data reveal a strong downward trend in breast milk Se concentration during the first 10 days of lactation (Millar & Sheppard, 1972; Grimanis et al., 1978; Higashi et al., 1983; Varo et al., 1984; Tamari et al., 1990, 1991, 1992; Yuzo & Mohri, 1991). Cumming et al. (1983) showed that, in a group of lactating Australian women, the mean plasma/milk selenium ratio was 6.9 ± 1.83 . This ratio increases slightly with the progression of lactation; while the plasma concentration remains constant the milk concentration declines. Lombeck et al. (1978) have shown an inverse relationship between the Se content and the

Geographical location	Date (year)	Anal. method ^a	Mean (µg/litre) (min-max)	N <u>o.</u>	Description ^b	Ref.
EUROPE						
Austria (Styria)	1988–91	HG-AAS	8.3 ± 3.0	34	Mature milk	Tiran et al. (1992)
Belgium	1983	HG-AAS	14.3 ± 4.7 (6.4-26.3)	24	Colostrum 0–3 days pp	Robberecht et al. (1985)
			11.9 ± 4.2	13	Transitory milk	
			$(5 \cdot 3 - 18 \cdot 1)$ $12 \cdot 3 \pm 3 \cdot 4$	11	5–7 days pp Transitory milk	
			(6.5–17.1)		8-10 days pp	
			9.1 ± 1.9 (6.5–12.3)	15	Mature milk 1 month pp	
			9.6 ± 3.3	9	Mature milk	
			(5.4-14.9) 9.3	1	2 months pp Pooled milk	
Finland	1976	EAAS	10.7 ± 1.6	13	1 month pp	Kumpulainen et al. (1983b)
(Helsinki)			5.8 ± 1.2 5.6 ± 0.4	13 4	3 months pp	
Finland	1980	EAAS	5.6 ± 0.4 11.8	4	6 months pp 1 month pp	Kumpulainen et al. (1984)
(Helsinki)	1700	Linio	10.0		3 months pp	
Finland	1982	EAAS	6.0 ± 0.5		Dried milk	Kumpulainen et al. (1983a)
Germany (Düsseldorf)	1976	INAA	14·9 (11·4–18)	3	≥15 days pp	Lombeck et al. (1977)
Germany	1978	INAA	77.9	3	Colostrum	Lombeck et al. (1978)
(Düsseldorf)			(60.8-100.4)	25	2-3 days pp	
			28·4 (15·1–48·9)	25	Transitory milk 4–10 days pp	
			(13.1-40.9) 26.7	44	Mature milk	
			(10.4–50.1)		11–173 days pp	
Germany	1986	SPF	17.8		10 days pp	Oster et al. (1986)
Greece (Athens)	1973	SPF	21 ± 1	24	29-195 days pp	Hadjimarkos & Shearer (1973)
Greece	1978	INAA	48 (33–69)	15	Colostrum 0–3 days pp	Grimanis et al. (1978)
			16	15	Transitory milk	
			(10–20) 15	5	4–10 days pp Mature milk	
			(14–22)	5	1 month pp	
Italy	1982	INAA	12.9 ± 0.9 (≤0.9–47.9)	20	≥15 days pp	Clemente et al. (1982)
Spain (Barcelona)	1981	SPF	11.4 ± 2.9 (9-18)	8	3-10 days pp	Farré et al. (1981)
UK (Glasgow)	1978		31 ± 10	25	_	Cross et al. (1978)
Yugoslavia (Ljubljana)	1982	RNAA	(7.4–14.5)	10		Polkowska-Motrenko et al. (1982)
(Ljubljana) Yugoslavia (Ljubljana)	1983	RNAA	11.5 ± 3.6 (5.7–16.7)	27	0–14 days pp	Kosta <i>et al.</i> (1983)
AMERICA	1974	SPF	20 ± 1	14	22-344 days pp	Shearer & Hadjimarkos (1975)
USA (Arizona, Douglas)	17/4	511	(11-27)	17	18-32 yr old	Shearer & Hadjimarkos (1975)
USA (Calif.,		SPF	18 ± 2	14	28-360 days pp	
Sta Barbara)		ODE	(10-32)	15	22–35 yr old	
USA (Colorado, Pueblo)		SPF	15 ± 1 (12–20)	15	86–648 days pp 19–33 yr old	
USA (Connect.,		SPF	(12-20) 15 ± 1	15	29-425 days pp	
Bristol)			(8–23)		19–29 yr old	
USA (Georgia,		SPF	18 ± 1	11	28-360 days pp	
Athens)			(12–25)		20–39 yr old	

continued

M. S. Alaejos, C. D. Romero

 Table 2—continued

Geographical location	Date (year)	Anal. method ^a	Mean (µg/litre) (min–max)	Nº.	Description ^b	Ref.
MERICA—contd.						
USA (Illinois)	1981	GC-ECD	41.2 ± 17.3	8	Colostrum 0–3 days pp	Smith <i>et al.</i> (1982)
(11111010)			18.0 ± 3.8	8	1 month pp	
			15.7 ± 4.6	8	2 months pp	
			$15 \cdot 1 \pm 5 \cdot 8$	8	3 months pp	
			15.7 ± 4.9	20	Fore milk	
			107 - 17		2 weeks pp	
			14·4 ± 1·6	20	Fore milk	
			144110	20	1 month pp	
			14.1 ± 3.2	20	Fore milk	
			141 ± 52	20	2 months pp	
			13.9 ± 3.2	20	Fore milk	
			13.9 ± 3.2	20		
			162 + 40	70	3 months pp	
			16.3 ± 4.9	72	Average	
			(8-34)	20	fore milk	
			$16\cdot3\pm4\cdot8$	20	Hind milk	
			150 . 20	20	2 weeks pp	
			$15\cdot 2 \pm 3\cdot 2$	20	Hind milk	
				• •	1 month pp	
			15.9 ± 3.4	20	Hind milk	
					2 months pp	
			16.4 ± 3.1	20	Hind milk	
					3 months pp	
			16.2 ± 5.4	16	Morning milk	
			16.6 ± 4.8	16	Midday milk	
			15.8 ± 4.6	16	Evening milk	
USA	1984-85	GC-ECD	16.8	10	4–8 weeks pp	Mannan & Picciano (1987)
(Illinois)			(11.5–27.3)		30 ± 5.6 years old	
			15.6 ± 0.4	10	Fore milk	
			18.1 ± 0.6	10	Hind milk	
USA	1986	GC-ECD	15.2 ± 0.6	10	_	Debski et al. (1987)
(Illinois)			15.1 ± 0.9	10	Skimmed milk	、 ,
· · ·			11.0 ± 0.5	10	Dialyzed milk	
USA (Indiana, Evansville)	1989	SPF	23 ± 4	12	0-2 months pp	Litov et al. (1989)
USA (Iowa,	1973	SPF	20 ± 1	15	40–83 days pp	Hadjimarkos & Shearer (1973)
Iowa City)			(15–24)		18–31 yr old	
USA	1981		20 ± 4	23	1 month pp	Levander et al. (1981)
(Maryland)	1701		15 ± 3	23	3 months pp	
(Wai yiana)			15 ± 5 15 ± 4	23	6 months pp	
USA	1986	SPF	15 ± 4 20 ± 1	23 10	1 month pp	Levander et al. (1987)
(Maryland)	1700	511	20 ± 1 15 ± 1	10	3 months pp	Levander et al. (1707)
(Ivial yland)			15 ± 1 15 ± 1	10		
LICA (Missouri	1074	CDE			6 months pp	Shaanaa 8 II. 1''aa ahaa (1075)
USA (Missouri,	1974	SPF	20 ± 1	15	22-540 days pp	Shearer & Hadjimarkos (1975)
Rolla)			(13–28)	10	22–37 yr old	
USA (Montana,			21 ± 1	10	42-390 days pp	
Billings)			(16–27)		24–30 yr old	
USA (New York,			15 ± 1	15	23-869 days pp	
Syracuse)			(10–19)		25-39 yr old	
USA	1980		56		Colostrum	Amin et al. (1980)
(New York)			31	—	Colostrum	
USA (New York,	1989–90	SPF	13.1	3	1-8 months pp	Avissar et al. (1991)
Rochester)						
USA (Ohio,	1974	SPF	13 ± 1	15	20–353 days pp	Shearer & Hadjimarkos (1975)
Akron)			(7–17)		23-42 yr old	
USA (Oklahoma,			16 ± 1	14	43-630 days pp	
Norman)			(9–26)		20–36 yr old	
USA (Oregon,	1973	SPF	21 ± 3	15	42–150 days pp	Hadjimarkos & Shearer (1973)

			l adie 2—	continued	1	
Geographical location	Date (year)	Anal. method ^a	Mean (µg/litre) (min-max)	N <u>⁰.</u>	Description ^b	Ref.
AMERICA—contd.						
USA (Pennsylvania,	1974	SPF	21 ± 1 (12-26)	15	65–363 days pp 22–33 yr old	Shearer & Hadjimarkos (1975)
State College)			28 ± 3	15	112 380 dave no	
USA (South Dakota, Sioux Falls)			(17-60)	15	112–389 days pp 21–41 yr old	
USA (Texas,			16 ± 1	15	24-480 days pp	
Corpus Christi)			(9–22)		20–31 yr old	
USA (Utah,			22 ± 3	14	17–390 days pp	
Salt Lake City)			(14-52)		21–32 yr old	
USA (Utah, Salt Lake City)	1989	SPF	25 ± 5	10	0-2 months pp	Litov et al. (1989)
USA	1989	IDMS	204 ± 13	6	74 ± 5 days pp	Mangels et al. (1990)
(Washington DC			(151–327)		29 ± 2 yr old	2
USA (Wyoming, Cheyenne)	1974	SPF	16 ± 1 (10–26)	14	37–704 days pp 17–38 yr old	Shearer & Hadjimarkos (1975)
ASIA						
Japan	1975-80	GC-ECD	45 ± 38	3		Robbins & Caruso (1979);
(Okayama)	1770 00	00202	(10–83)	-		Shimoishi (1976); Tôei & Shimoishi (1981)
Japan (Kyoto)	1982		22.5 ± 4.2	13	Mature milk	Hojo (1982)
Japan	1983	SPF	(35–152)	7	Colostrum	Higashi et al. (1983)
Jupun	1,00		()		(0-3 days pp)	
			(15-79)	10	Transitional milk	
			(10 ())		(4–10 days pp)	
			(9–39)	9	Mature milk	
			() ())	-	(1 month pp)	
			(6-28)	8	(3 months pp)	
			(9-33)	7	(5 months pp)	
			21	34	Average content	
			21	51	without colostrum	
Japan	1986	SPF	22.5	_	Mature milk	Нојо (1986b)
Japan	1990	SPF	19.6		Colostrum	Tamari <i>et al.</i> (1990)
Japan	1770	511	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(2 days pp)	
			0.8	_	Milk, 5 days pp	
Japan	1991	SPF	28.4		Colostrum	Tamari et al. (1991, 1992)
<i>cupun</i>			8.7		Mature milk	
					(7-171 days pp)	
Japan	1991	SPF	29.7 ± 10.5	8	Colostrum	Yuzo & Mohri (1991)
Jupan			18.9 ± 9.4	8	Transitional milk	× ,
			10 / 2 / 1		(4-7 days pp)	
			10.8 ± 2.7	8	Mature milk (7-21 days pp)	
OCEANIA						
Australia	1982	INAA	11.6 ± 1.9* (9.7–29)	14	8-23 weeks pp	Cumming et al. (1983)
Kensington	1984	GC-ECD	8	1	Healthy	Dilli & Sutikno (1984a)
New Zealand	1983		7.6	_	1 month pp	Williams (1983)

Table 2—continued

^a GC-ECD: Gas-chromatography with electron capture detection; IDMS: Isotope dilution mass spectrometry.

^b pp: Postpartum.

*pmol Se/g.

time postpartum; however, other authors (Shearer & Hadjimarkos, 1975) have indicated that this correlation was very weak (r = -0.13, p < 0.05). Another author (Hojo, 1986a) showed that both GSH-Px and Se contents of breast milk decreased with increasing time of lactation and reached a plateau one month postpartum. This sequential change was not due to the Se intake of the mothers, as reflected in urinary Se content. This is

in accordance with the values in serum (Lombeck *et al.*, 1978; Kumpulainen *et al.*, 1987) and whole blood (Mackenzie *et al.*, 1978) Se concentrations of children. Also a strong decrease in breast-milk Se during the first and third months of lactation has been observed in lactating women from Finland ($\approx 30 \ \mu g$ Se/day) (Kumpulainen *et al.*, 1983b) and Belgium (Robberecht *et al.*, 1985). However, in mature human milk from the

Geographical location	Date (year)	Anal. method ^a	Mean (min-max)	Nº.	Description	Ref.
EUROPE						
Finland	1977	HG-AAS	7.89 ± 1.2	16	Dairy cows	Varo & Koivistoinen (1981)
	1977		3.48	6	Dairy cows	
	1980		(3.48 - 4.64)	6	(standardized)	
	1960		8·12 (6·96–9·28)	6	Dairy cows (untreated)	
Germany	1976	INAA	10.2 ± 2.55	3	Dairy cows	Lombeck et al. (1977)
(Düsseldorf) Germany	1978	INAA	(7·8–12·9) 23·2	45	Dairy cows	Lombeck et al. (1978)
(Düsseldorf)			(16·2–35·2)	10	·	. ,
Germany	1986	—	(6.8–7.2)		Dairy cows	Oster et al. (1986)
Norway (Oslo)	1979	SPF	10·6 (7·7–11·6)	13	Dairy cows	Karlsen et al. (1981)
Norway	1983	EAAS	10.1 ± 2.5	10	Cows	Norheim et al. (1983)
			(7.2–15.3)			
The Netherlands	1973	INAA	7.6 ± 0.82 (7.5–13.3)	5	Soil type marine clay	Binnerts (1979)
			(7.5-13.3) 3.9 ± 0.30	5	Soil type	
			(3.4-5.45)	5	sand and peat	
			5.1 ± 0.63	6	Soil type	
			(5.2-7.54)	-	mixed	
The Netherlands	1989	SPF	16.5 ± 1.3	7	Winter milk	Koops et al. (1989)
		_	(14.5–18.4)			- · · · ·
		EAAS	15.5	7		
		ODE	(14.5-17.4)		0	
		SPF	10.3 ± 0.5	7	Summer milk	
		EAAS	(9.7-10.6) 9.7 (7.7-12.5)	7		
AMERICA			(7.7–13.5)			
Canada	1979	SPF	28	8	Holstein cows	Fisher et al. (1980)
(British Columb		~ •		Ŭ		·
USA (Florida)	1980	_	(8–13)	_	Beef cattle	Ammerman et al. (1980)
					Se supplement.	
USA (Illinois)	1987	GC-ECD	9.6 ± 0.4	10	Holstein cows	Debski et al. (1987)
			05103	10	(whole milk)	
			9.5 ± 0.3	10	Holstein cows	
			7.3 ± 0.3	10	(skimmed milk) Holstein cows	
			7.3 ± 0.3	10	Holstein cows	
USA (Indiana)	1977	_		10	Holstein cows (dialyzed milk)	Perry et al. (1977)
USA (Indiana)	1977	_	7.3 ± 0.3 (14–23)	10	Holstein cows	Perry et al. (1977)
USA (Indiana)	1977	_		10	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days	Perry et al. (1977)
USA (Indiana)	1977	_	(14–23)	10	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum	Perry et al. (1977)
USA (Indiana)	1977	_		10	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows	Perry et al. (1977)
USA (Indiana)	1977	_	(14–23)	10	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement	Perry et al. (1977)
USA (Indiana)	1977	_	(14–23)	10	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months	Perry et al. (1977)
			(14–23) (16–21)		Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum	
USA (Indiana) USA (Ohio)	1977 1978	 SPF	(14–23)	10	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months	Perry <i>et al.</i> (1977) Conrad & Moxon (1979)
		 SPF 	(14–23) (16–21)	5	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum Jersey and	
USA (Ohio) USA (Ohio) USA	1978	SPF SPF	(14-23) (16-21) 8 ± 1.9 5 64 ± 13		Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum Jersey and Holstein cows	Conrad & Moxon (1979)
USA (Ohio) USA (Ohio)	1978 1981 1977	_	(14-23) (16-21) 8 ± 1.9 5 64 ± 13 (45-80)	5	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum Jersey and Holstein cows Beef cattle Dairy cows (December)	Conrad & Moxon (1979) Moxon (1981)
USA (Ohio) USA (Ohio) USA	1978 1981	_	(14-23) (16-21) 8 ± 1.9 5 64 ± 13 (45-80) 53 ± 20	5	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum Jersey and Holstein cows Beef cattle Dairy cows (December) Dairy cows	Conrad & Moxon (1979) Moxon (1981)
USA (Ohio) USA (Ohio) USA	1978 1981 1977	_	(14-23) (16-21) 8 ± 1.9 5 64 ± 13 (45-80) 53 ± 20 (32-88)	5 8 8	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum Jersey and Holstein cows Beef cattle Dairy cows (December) Dairy cows (January)	Conrad & Moxon (1979) Moxon (1981)
USA (Ohio) USA (Ohio) USA	1978 1981 1977	_	$(14-23)$ $(16-21)$ 8 ± 1.9 5 64 ± 13 $(45-80)$ 53 ± 20 $(32-88)$ 46 ± 7	5	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum Jersey and Holstein cows Beef cattle Dairy cows (December) Dairy cows (January) Dairy cows	Conrad & Moxon (1979) Moxon (1981)
USA (Ohio) USA (Ohio) USA	1978 1981 1977	_	$(14-23)$ $(16-21)$ 8 ± 1.9 5 64 ± 13 $(45-80)$ 53 ± 20 $(32-88)$ 46 ± 7 $(36-58)$	5 8 8 8	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum Jersey and Holstein cows Beef cattle Dairy cows (December) Dairy cows (January) Dairy cows (May)	Conrad & Moxon (1979) Moxon (1981)
USA (Ohio) USA (Ohio) USA	1978 1981 1977	_	$(14-23)$ $(16-21)$ 8 ± 1.9 5 64 ± 13 $(45-80)$ 53 ± 20 $(32-88)$ 46 ± 7 $(36-58)$ 64 ± 10	5 8 8	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum Jersey and Holstein cows Beef cattle Dairy cows (December) Dairy cows (January) Dairy cows (May) Dairy cows	Conrad & Moxon (1979) Moxon (1981)
USA (Ohio) USA (Ohio) USA	1978 1981 1977	_	$(14-23)$ $(16-21)$ 8 ± 1.9 5 64 ± 13 $(45-80)$ 53 ± 20 $(32-88)$ 46 ± 7 $(36-58)$	5 8 8 8	Holstein cows (dialyzed milk) Hereford cows Se supplement 2–3 days postpartum Hereford cows Se supplement 3 months postpartum Jersey and Holstein cows Beef cattle Dairy cows (December) Dairy cows (January) Dairy cows (May)	Conrad & Moxon (1979) Moxon (1981)

Table 3. Selenium levels (μ g/litre) in cow's milk

Geographical location	Date (year)	Anal. method ^{<i>a</i>}	Mean (min–max)	N <u>⁰.</u>	Description	Ref.
ASIA						
India (Bombay)	1987	INAA	1.5 ± 3		Dairy cows	Singh & Sawant (1987)
Japan	1980	GC-ECD	(21–27) Se _T	3	Dairy cows	Tôei & Shimoishi (1981)
			(12-17) Se (VI)			
Japan	1981		64		Dairy cows	Munnehiro et al. (1981)
Japan (Kyoto)	1982	SPF	23		Dairy cows	Hojo (1982)
Japan	1990	SPF	17.4 ± 3.6	13		Tamari et al. (1990)
OCEANIA						
Australia	1982	SPF	$0.2 \pm 0.01*$	4	Raw milk	Koh & Benson (1983)
New Zealand	1980	SPF	7.2	_		Grant (1981)

Table 3—continued

^{*a*} GC-ECD: Gas-chromatography with electron capture detection.

* µmol Se/litre.

USA (Shearer & Hadjimarkos, 1975; Smith *et al.*, 1982) or Japan (Higashi *et al.*, 1983), with an average dietary intake of 80 and 88 μ g/day respectively, the concentration of Se does not usually decline significantly with the advancing stages of lactation. Maternal body reserves and/or low dietary Se intake may not have been sufficient to maintain the Se level of breast milk (Kumpulainen *et al.*, 1983*b*).

Variations in Se concentrations of human milk can occur during the same feed. Se content in hind milk was found to be greater than fore milk at two and three months postpartum (Smith *et al.*, 1982) and in the first four months also (Mannan & Picciano, 1987). However, no significant differences were found in human milk samples of ≤ 1 month taken before, during and after feeding (Millar & Sheppard, 1972; Smith *et al.*, 1982). Maternal stature, maternal weight or infant's birth weight contribute to the variation in elemental concentration in milk although the contributions were small in all cases (Yoshinaga *et al.*, 1991). There was no correlation between Se levels and the ages of the individual donors (Shearer & Hadjimarkos, 1975).

Levels in other commercial milk adapted to human milk

Selenium concentration in milk from different animal species decreases in the order: human, sheep > goat >cow (Debski et al., 1987). The Se contents in commercial milks adapted to human milk, or to cow's milk and other derivatives have been reported showing the results in ng/g dw (Lombeck et al., 1977, 1978), µg/litre (Shimoishi, 1976; Farré et al., 1981; Hojo, 1982), μg/kg (Bruhn & Franke, 1977; Charlot et al., 1989), or ng Se/kcal (Roekens et al., 1985). Although there are exceptions (Higashi et al., 1982; Hatano et al., 1985), most authors (Lombeck et al., 1977, 1978; Farré et al., 1981; Smith et al., 1982; Hojo, 1986; Debski et al., 1987; Tamari et al., 1991, 1992) reported that the Se content of human milk is significantly greater than in the available milk formulas for infants. In this sense, the Se content of infant formulas marketed in the USA

is approximately 40% of that of mature human milk (Smith et al., 1982). Also, the average Se content of 107 samples of 10 different cow's milk infant formulas from Germany was less than 33% of that of mature human milk (Lombeck et al., 1978). However, several authors (Lombeck et al., 1977; Tamari et al., 1990; Hojo, 1982) did not find significant differences between the values of mature human milk and of cow's milk (Table 3). Due to the fact that many Se compounds in milk are quite volatile, processing by hot-air treatment could reduce the Se content of cow's milk with increasing temperature and time of heating (Morris & Levander, 1970; Lombeck et al., 1977). So, Hojo (1986b) found losses of Se amounted to 11.1% at 210°C for 25 min. On the other hand, mean levels of Se (µg/litre) decreased in the sequence: pasteurized cow's milk (28.4) >raw cow's milk (23.1) > mature human milk (22.5) > milk-based infant formula (6.6) (Hojo, 1986b). Lombeck et al. (1980) estimated the Se content of samples of raw cow's milk, ultra-high temperature sterilized milk, and skimmed milk. There was no statistically significant differences in comparison with the respective pasteurized milk samples from the same geographic region. Absence of GSH-Px activity in pasteurized milk and infant formula results from the heating process in their preparation (Hojo, 1986b). In one study (Zabel et al., 1978), infant formulas, not generally supplemented with Se, varied widely in Se content, depending upon their source of ingredients. Also, Se content of nonfat dry milk varies greatly depending on the geographic origin of the milk (Varo et al., 1984). According to the latter, the greater Se content in cow's milk was found in South Dakota, a typical seleniferous area (Olson & Palmer, 1984). On the other hand, the areas which correspond with low Se contents in milk may in fact be Se-deficient (Binnerts, 1979).

There are other factors that can produce some variations in the Se content of cow's milk. Thus, untreated cow's milk obtained in July contained higher levels of Se than that obtained in November (Hojo, 1982). However, in processing plants in South Dakota state, the

Geographical location	Data (year)	Subjects	Feed type	Mean (min–max)	Ref.
EUROPE					
Belgium	1983	Boys,	Breast milk	8.1	Tiran <i>et al.</i> (1992)
		3 months Girls,		7.1	
		3 months		/ 1	
Belgium	1984	1 month	Breast milk	6.1	Roekens et al. (1985)
U				(3.8-10.4)	
		3 months		7.2	
		6 months		(4·5–12·4) 8·6	
		omonthis		(5·4–14·8)	
		3 months	Bottle-fed cow's milk	9.0	
		1 month	Milk-based formula	3.0	
		. .		(0.4-10.9)	
		3 months		3.5	
		6 months		(0·5–12·9) 4·2	
		omontins		(0.6-15.4)	
		1 month	Milk infant formula	5.7	
			therapeutic use	(0.6–15.9)	
		3 months		6.7	
		6 months		(0·7–18·9) 8·0	
		omonthis		(0·8-22·5)	
		1 month	Processed cow's milk	7.6	
				(6.1–12.8)	
		3 months		9.0	
		6 months		(7·2–15·2) 10·8	
		omontins		(8·6–18·1)	
T ' 1 1	1056		D	. ,	
Finland (Holsinki)	1976	$\begin{array}{l} 1 \text{ month,} \\ n = 10 \end{array}$	Breast milk	8.0 ± 1.8	Kumpulainen et al. (1983b)
(Helsinki)		1 - 10 3 months,		4.7 ± 1.1	
		n = 10		$+7 \pm 11$	
Finland	1981-82	4-12 months	Milk infant formula	16	Kumpulainen et al. (1987)
(Helsinki)		n = 16	(Se supplemented)		
Germany	1976–77	2 months	Cow's milk	7.8	Lombeck et al. (1978)
(Düsseldorf)			infant formula		201100011 01 011 (1910)
	1978	2 months	Breast milk	22.4	
Germany	1986	3.5 kg	Breast milk	12	Oster et al. (1986)
		of weight	Milk infant formula Cow's milk	< 3.5	
			COW S IIIIK	5	
Spain	1981	1 week	Breast milk	2.39	Farré et al. (1981)
(Barcelona)		1st week	Milk infant formula	2.34	
		2nd week	Breast milk Milk infant formula	3·19 3·13	
		3–4 weeks	Breast milk	3.19	
			Milk infant formula	3.90	
		2nd month	Breast milk	3.23	
		1 1	Milk infant formula	6.25	
		3rd month	Breast milk Milk infant formula	4·18 8.65	
		4th month	Breast milk	8·65 4·53	
			Milk infant formula	9.96	
			Bottle-fed cow's milk	6.94	
		5–6 months	Breast milk	4.53	
			Milk infant formula	10.27	
		7–9 months	Bottle-fed cow's milk Breast milk	6·78	
		, - 7 monuis	Milk infant formula	9.66	
			Bottle-fed cow's milk	6.82	
		10-12 months	Breast milk		
			Milk infant formula	7.33	
			Bottle-fed cow's milk	5.60	

Table 4. Estimated daily intake of selenium ($\mu g/day$) for infants

Geographical location	Data (year)	Subjects	Feed type	Mean (min–max)	Ref.
EUROPE—contd.					
UK (Scotland)	1978	3 months	Breast milk Milk infant formula	35 18	Cross et al. (1978)
AMERICA					
USA	1978	0-6 months	Milk based diets	8.5	Zabel et al. (1978)
USA (Illinois)	1981	3 months	Breast milk Milk infant formula	10.08 ± 2.96 7.22 ± 1.26	Smith et al. (1982)
USA (Maryland)	1986	1 month 3 months	Breast milk	10 12	Levander et al. (1987)
	1990	6 months 8–12 months	Formula-fed	13 31	G_{response} at $al (1000)$
	1990	n = 26	Cow's milk	34	Gropper et al. (1990)
ASIA					
China (low Se area)	1985–86		Breast milk	11.8	Yang et al. (1989)
(medium Se area)				24.3	
(high Se area)				94.6	
Japan	1983	5 months	Breast milk	17	Higashi <i>et al.</i> (1983)
Japan	1991	0–4 days	Colostrum	17	Tamari et al. (1991, 1992)
		>1 month	Breast milk	8	
Japan	1991		Formula-fed	(2-3)	Tamari et al. (1991)
Japan	1986	3 months	Breast milk	21.0	Hojo (1986 <i>b</i>)
			Pasteur. cow's milk	18.9	
			Raw cow's milk	15.0	
			Formula-fed	5.4	
Japan	1991		Formula-fed	(3–6)	Tamari et al. (1992)
Japan	1991	—	Colostrum Formula-fed	(10–15) (3–5)	Yuzo & Mohri (1991)
OCEANIA					
New Zealand	1972	1 month	Breast milk	5	Millar & Sheppard (1972)
			Bottle-fed cow's milk	2	

 Table 4—continued

highest values were obtained in winter and the lowest in summer (Olson & Palmer, 1984). The Se concentration in colostral milk (0.13–0.21 μ g/g dry weight) was determined in cows with or without retained placenta (Bostedt & Schramel, 1981) and in healthy cows (Koller *et al.*, 1984). The effect of mastitis on the Se content of cow's milk was studied (Sarudi *et al.*, 1989; Osama *et al.*, 1992). The concentration in milk increased with the presence of mastitis, and also with increasing severity of mastitis (Sarudi *et al.*, 1989), but serum Se levels remained within the normal range (Osama *et al.*, 1992).

SELENIUM INTAKE FOR LACTATING INFANTS

As can be seen in Table 4, there are great variations of the estimated daily intakes of Se in lactating babies from different geographical areas. These values in general are very small compared to those of adults, which amount to about 56 μ g/day in New Zealand (Watkinson, 1974), to 88.3 μ g/day in Japan (Sakurai & Tsuchiya, 1975) and 197 μ g/day in Canada (Thompson *et al.*, 1975). The daily Se intakes of infants, as calculated from daily breast milk consumption, averaged 2.5, 11.8, 24.3, and 94.6 μ g/day in Keshan-disease, low, medium, and high Se-areas in China, respectively (Levander, 1987; Yang *et al.*, 1989). As a consequence of decrease in dietary intake, a significant decrease in Se in neonates from Helsinki was observed (Kumpulainen *et al.*, 1983b; Alfthan, 1986). Dietary Se intakes of Finnish (Kumpulainen *et al.*, 1983b) and Belgian (Robberecht *et al.*, 1985) breast-fed infants are considerably lower than the lowest level of 'safe and adequate' intake of 10 μ g/day proposed by the National Research Council. But all infants were healthy, gaining weight and height according to the norms of typical Finnish infants (Vuori & Kuitunen, 1979).

On the other hand, infants fed human milk have a higher Se intake than those fed commercially available formula milk or baby foods (Lombeck *et al.*, 1977; Cross *et al.*, 1978; Smith *et al.*, 1982; Oster *et al.*, 1986; Gropper *et al.*, 1990; Tamari *et al.*, 1991). In the case of baby foods, it is surprising because cereals are widely fed as first solid foods, and cereals are considered important sources of Se. However, Se in cereals is lost (7–78%) after dry heating (Morris & Levander, 1970; Higgs *et al.*, 1972) which could explain the lower Se intakes in infants fed baby foods. Therefore, dietary Se intake ($\mu g/day$) of three-month-old Japanese infants fed on infant formula and various milks decreased in the order: human milk (21.0) > pasteurized cow's milk

(18.9) > raw cow's milk (15.0) > infant formula (5.4). So, a two-month-old German infant on cow's milk infant formula alone receives about 7.8 μ g Se/day in its food, while a breast-fed infant receives about 22.4 μ g Se/day (Lombeck *et al.*, 1978). The Se intake of infants fed with commercially available infant formulas and some vegetables is approximately 2-6 μ g/day (Lombeck *et al.*, 1977). Selenium intake of infants fed on the formula seems to be at the intermediate level between Se deficiency and adequate amounts (Yuzo & Mohri, 1991).

These higher intakes in the breast-fed (BF) infant were reflected in higher serum Se compared to a formulafed (FF) infant. So, at one to five weeks of age, the plasma Se content in BF infants was higher than that in cord blood, and in FF infants it was similar to the level in cord blood. A significant positive correlation (r = 0.42, p < 0.05) was found between the Se intake of infants and their serum Se concentration at three months (Smith et al., 1982). Serum Se concentrations were significantly higher in BF infants, than in FF infants. Hatano et al. (1984, 1985) and Gropper et al. (1990) observed significantly lower concentrations of plasma Se in FF than in BF infants, although the Se intake was almost the same in both groups. Consequently, the Se compounds in breast milk seem to be more biologically available for infant nutrition than those in formulas (Hatano et al., 1985; Kumpulainen et al., 1987; Tamari et al., 1991; Yuzo & Mohri, 1991).

CONCLUDING REMARKS

Mature human milk has a Se content lower than transitory milk, and transitory milk lower than colostrum. This fact could be due to differences in protein content, owing to the fact that most of the fraction of Se in milk is associated with the protein fraction.

It can be confirmed that Se in milk, and therefore Se intake and status of newborns, is largely a function of the Se intake of the mother. However, there must be other influential factors such as the form of bioavailability of Se in the diet, as well as interactions with other nutrients.

Decrease with time of Se concentration in mature human milk has been observed in low-Se areas. Body reserves do not seem to be sufficient to maintain the Se level of breast milk.

Human milk has higher Se levels than milk formulas for infants, perhaps due to losses in the latter by processing. Also, Se compounds in breast milk seem to be more biologically available for infants than for those in formulas.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the help of Patrick Dennis in improving the English of this article.

REFERENCES

- Alexander, J., Saeed, K. & Thomassen, Y. (1980). Thermal stabilization of inorganic and organo-selenium compounds for direct electrothermal atomic absorption spectrometry. *Anal. Chim. Acta*, **120**, 377–82.
- Alfthan, G. (1984). A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry. *Anal. Chim. Acta*, 165, 187–94.
- Alfthan, G. (1986). Selenium status of nonpregnant, pregnant women and neonates. Acta Pharmacol. Toxicol., 59, 142–5.
- Amin, S., Chen, Y., Collipp, P., Castro-Magana, M., Maddaiah, V. & Klein, S. (1980). Selenium in premature infants. *Nutr. Metab.*, 24, 331–40.
- Ammerman, C. B., Chapman, H. L., Bouwman, G. W., Fontenot, J. P., Bagley, C. P., Moxon, A. L. (1980). Effect of supplemental selenium for beef cows on the performance and tissue selenium concentrations of cows and suckling calves. J. Anim. Sci., 51, 1381.
- Avissar, N., Whitin, J. C., Allen, P. Z., Palmer, L. S. & Cohen, H. J. (1989a). Anti-human plasma glutathione peroxidase antibodies: Immunologic investigations to determine plasma glutathione peroxidase protein and selenium content in plasma. *Blood*, **73**, 318-23.
- Avissar, N., Whitin, J. C., Allen, P. Z., Wagner, D. D., Liegey, P. & Cohen, H. J. (1989b). Plasma selenium dependent glutathione peroxidase: Cell of origin and secretion. J. Biol. Chem., 264, 15850-5.
- Avissar, N., Slemmon, J. R., Palmer, I. S. & Cohen, H. J. (1991). Partial sequence of human plasma glutathione peroxidase and immunologic identification of milk glutathione peroxidase as the plasma enzyme. J. Nutr., 121, 1243–9.
- Behne, D. & Matamba, P. A. (1975). Trocknung und Veraschung biologischer Proben bei der neutronenaktivierungs-analytischen Spurenelementbestimmung. Fresenius' Z. Anal. Chem., 274, 195–7.
- Binnerts, W. T. (1979). The selenium status of dairy cows in the Netherlands derived from milk and blood analysis. *Neth. Milk Dairy J.*, 33, 24–40.
- Bostedt, H. & Schramel, P. (1981). Comparative studies on selenium levels in blood serum, placenta, myometrium, and milk of cows with or without retained placenta. *Zentralbl. Veterinaermed.*, **28A**, 529–37.
- Broderick, D. J., Deagan, J. T. & Whanger, P. O. (1987). Properties of glutathione peroxidase isolated from human plasma. J. Inorg. Biochem., 30, 299–308.
- Bruhn, J. C. & Franke, A. A. (1977). Trace metal and protein concentrations in California market milks. J. Food Prot., 40, 170–3.
- Bukkens, S. G. F., de Vos, N., Kok, F. J., Schouten, E. G., de Bruijn, A. M. & Hofman, A. (1990). Selenium status and cardiovascular risk factors in healthy Dutch subjects. J. Am. Coll. Nutr., 9, 128–35.
- Bunker, V. W. & Delves, H. T. (1987). Accurate determination of selenium in biological materials without perchloric acid for digestion. *Anal. Chim. Acta*, 201, 331–4.
- Cappon, C. J. & Smith, J. C. (1978). Determination of selenium in biological materials by gas chromatography. J. Anal. Toxicol., 2, 114-20.
- Carnrick, G. R., Manning, D. C. & Slavin, W. (1983). Determination of selenium in biological materials with platform furnace atomic-absorption spectroscopy and Zeeman background correction. *Analyst (London)*, **108**, 1297–312.
- Charlot, C., Rieu, D. & Touati, J. (1989). Détermination du sélénium dans les laits en poudre et substituts du lait par spectrométrie d'absorption atomique électrothermique. *Analysis*, **17**, 272–4.
- Clark, L. C. (1985). The epidemiology of selenium and cancer. Fed. Proc., 44, 2584–9.
- Clemente, G. F., Ingrao, G. & Santaroni, G. P. (1982). The concentration of some trace elements in human milk from Italy. *Sci. Total Environ.*, **24**, 255–65.

- Committee on Dietary Allowances (1989). Food and Nutrition Board. National Research Council. Recommended dietary allowances, 10th edn. National Academy Press, Washington, DC, pp. 217–23.
- Conrad, H. R. & Moxon, A. L. (1979). Transfer of dietary selenium to milk. J. Dairy Sci., 62, 404-11.
- Combs, G. F. Jr, Clark, L. C. (1985). Can dietary selenium modify cancer risk? Nutr. Rev., 43, 325-30.
- Cornelis, R. (1991). A journey through the hazards of possible errors in the analysis of trace elements in body fluids and tissues. *Mikrochim. Acta (Wien)*, 111, 37–44.
- Cross, J. D., Raie, R. M., Smith, H. & Smith, L. B. (1978). Dietary selenium in the Glasgow area. *Radiochem. Radioanal. Lett.*, 35, 281–90.
- Cumming, F. J., Fardy, J. J. & Briggs, M. H. (1983). Trace elements in human milk. Obstet. Gynecol., 62, 506-8.
- Debski, B., Picciano, M. F. & Milner, J. A. (1987). Selenium content and distribution of human, cow and goat milk. J. Nutr., 117, 1091-7.
- Dilli, S. & Sutikno, I. (1984a). Investigation of two fluorinated reagents for the analysis of selenium by gas chromatography. J. Chromatogr., 298, 21–40.
- Dilli, S. & Sutikno, I. (1984b). Analysis of selenium at the ultra-trace level by gas chromatography. J. Chromatogr., 300, 265-301.
- Egan, A., Kerr, S. & Minski, M. J. (1977). Instrumental neutron-activation analysis of selenium using Se-77m ($t_{1/2} = 17$ s) in biological materials. *Dev. Toxicol. Environ. Sci.*, 1, 353–6.
- Farré, R., González, M., Marsá, M. & Morros, R. (1981). Contenido en selenio de leches en polvo y papillas comerciales para alimentación infantil. *Rev. Agroquím. Tecnol. Aliment.*, 21, 554–60.
- Feinberg, M. H. (1991). Definition of reference procedures for focused microwave digestion. *Analysis*, **19**, 47-55.
- Fisher, L. J., Hoogendoorn, C. & Montemurro, J. (1980). The effect of added dietary selenium on the selenium content of milk, urine and feces. *Can. J. Anim. Sci.*, 60, 79-86.
- Grant, A. B. (1981). Observations on analysis of selenium in plant and animal tissues and in soil samples. *New Zealand J. Sci.*, 24, 65-79.
- Grimanis, A. P., Vassilaki-Grimani, M., Alexiou, D. & Papadatos, C. (1978). Determination of seven trace elements in human milk, powdered cow's milk and infant foods by neutron activation analysis. *Proc. Nuclear Activation Techniques in the Life Sciences*, IAEA, Vienna, 241 pp.
- Gropper, S. A. S., Anderson, K., Landing, W. M. & Acosta, P. B. (1990). Dietary selenium intake and plasma selenium concentrations of formula-fed and cow's milk-fed infants. J. Am. Diet. Assoc., 90, 1547-50.
- Hadjimarkos, D. M. & Shearer, T. R. (1973). Selenium in mature human milk. Am. J. Clin. Nutr., 26, 583–5.
- Han, H.-B., Kaiser, G. & Tölg, G. (1981). Decomposition of biological materials, rocks, and soils in pure oxygen under dynamic conditions for the determination of selenium at trace levels. *Anal. Chim. Acta*, **128**, 9–21.
- Handelman, G. J., Kosted, P., Short, S. & Dratz, E. A. (1989). Determination of selenium in human blood by high-performance liquid chromatography with fluorescence detection. *Anal. Chem.*, **61**, 2244–9.
- Hatano, S., Nishi, Y. & Usui, T. (1984). Plasma selenium concentration in healthy Japanese children and adults determined by flameless atomic absorption spectrophotometry. J. Pediatr. Gastroenterol. Nutr., 3, 426–31.
- Hatano, S., Aihara, K., Nishi, Y. & Usui, T. (1985). Trace elements (copper, zinc, manganese, and selenium) in plasma and erythrocytes in relation to dietary intake during infancy. J. Pediatr. Gastroenterol. Nutr., 4, 87–92.
- Heydorn, K. & Griepink, B. (1990). Selection of reference methods for the determination of selenium in biological materials. *Fresenius J. Anal. Chem.*, 338, 287–92.

- Higashi, A., Tamari, H., Ikeda. T., Matsuda, I. & Yasutake, R. (1982). Selenium contents of breast milk and infant formula. Acta Pediatr. Jpn, 86, 1299–302.
- Higashi, A., Tamari, H., Kuroki, Y. & Matsuda, I. (1983). Longitudinal changes in selenium content of breast milk. *Acta Paediatr. Scand.*, **72**, 433-6.
- Higgs, D. J., Morris, V. C. & Levander, O. A. (1972). Effect of cooking on selenium content of foods. J. Agr. Food Chem., 20, 678–80.
- Hoenig, M. (1991). Détermination du sélénium dans le sang par spectrométrie d'absorption atomique électrothermique avec effect Zeeman: Discussion des paramètres critiques. Analysis, 19, 41-6.
- Hojo, Y. (1982). Selenium concentration and glutathione peroxidase activity in cow's milk. Biol. Trace Elem. Res., 4, 233–9.
- Hojo, Y. (1986a). Sequential study on glutathione peroxidase and selenium contents of human milk. Sci. Total Environ., 52, 83-91.
- Hojo, Y. (1986b). Selenium in Japanese baby foods. Sci. Total Environ., 57, 151-9.
- Holynska, B. & Lipinska-Kalita, K. (1977). Optimization of wet digestion procedure of blood and tissue for selenium determination by means of ⁷⁵Se tracer. *Radiochem. Radioanal. Lett.*, **30**, 241–5.
- Iyengar, G. V. (1982). Elemental composition of human and animal milk: A review. *International Atomic Energy Agency*, Vienna, IAEA-Tecdoc, 269 pp.
- Kalouskova, J., Drábek, K., Pavlík, L. & Hodík, F. (1989). Radiochemical separation of ⁷⁵Se with *o*-phenylenediamine for instrumental neutron activation analysis of selenium in biological materials. J. Radioanal. Nucl. Chem., **129**, 59–67.
- Karlsen, J. T., Norheim, G. & Froslie, A. (1981). Selenium content of Norwegian milk, eggs and meat. Acta Agric. Scand., 31, 165–70.
- Keshan Disease Research Group (1979a). Observations on effect of sodium selenite in prevention of Keshan disease. *Chin. Med. J.*, **92**, 471-6.
- Keshan Disease Research Group (1979b). Epidemiologic studies on the etiologic relationship of selenium and Keshan disease. *Chin. Med. J.*, **92**, 477–82.
- Khan, Y. (1989). Keshan disease and the selenium research of China. *Pedorojisuto*, **33**, 201–12.
- Koh, T. S. & Benson, T. H. (1983). Critical re-appraisal of fluorometric method for determination of selenium in biological materials. J. Assoc. Off. Anal. Chem., 66, 918–26.
- Koller, L. D., Whitbeck, G. A. & South, P. J. (1984). Transplacental transfer and colostral concentrations of selenium in beef cattle. Am. J. Vet. Res., 45, 2507–10.
- Koops, J., Klomp, H. & Westerbeek, D. (1989). Determination of selenium in milk by spectrofluorometry and by Zeeman-corrected, stabilized-temperature platform-furnace atomic-absorption spectroscopy. Comparison of results. *Neth. Milk Dairy J.*, 43, 185–98.
- Kosta, L., Byrne, A. R. & Dermelj, M. (1983). Trace elements in some human milk samples by radiochemical neutron activation analysis. *Sci. Total Environ.*, 29, 261–8.
- Kumpulainen, J., Raittila, A. M., Lehto, J. & Koivistoinen, P. (1983a). Electrothermal atomic absorption spectrometric determination of selenium in foods and diets. J. Assoc. Off. Anal. Chem., 66, 1129–35.
- Kumpulainen, J., Vuori, E., Kuitunen, P., Mäkinen, S. & Kara, R. (1983b). Longitudinal study on the dietary selenium intake of exclusively breast-fed infants and their mothers in Finland. *Int. J. Vitamin Nutr. Res.*, 53, 420-6.
- Kumpulainen, J., Vuori. E., & Siimes, M. A. (1984). Effect of maternal dietary selenium intake on selenium levels in breast milk. Int. J. Vitam. Nutr. Res., 54, 251-5.
- Kumpulainen, J., Salmenperä, L., Siimes, M. A., Koivistoinen, P. & Perheentupa, J. (1985). Selenium status of exclusively breast-fed infants as influenced by maternal organic or inorganic selenium supplementation. Am. J. Clin. Nutr., 42, 829–35.

- Kumpulainen, J., Salmenperä, L., Siimes, M. A., Koivistoinen, P., Lehto, J. & Perheentupa, J. (1987). Formula feeding results in lower selenium status than breast-feeding or selenium supplemented formula feeding: A longitudinal study. Am. J. Clin. Nutr., 45, 49-53.
- Lalonde, L., Jean, Y., Roberts, K. D., Chapdelaine, A. & Bleau, G. (1982). Fluorometry of selenium in serum or urine. *Clin. Chem.*, 28, 172–4.
- LamLeung, S. Y., Cheng, V. K. W. & Lam, Y. W. (1991). Application of a microwave oven for drying and nitric acid extraction of mercury and selenium from fish tissue. *Analyst (London)*, **116**, 957–9.
- Lane, H. W., Dudrick, S. & Warren, D. C. (1981). Blood selenium levels and glutathione-peroxidase activities in university and chronic intravenous hyperalimentation subjects. *Proc. Soc. Exp. Biol. Med.*, 167, 383–90.
- Levander, O. A. (1987). A global view of human selenium nutrition. Ann. Rev. Nutr., 7, 227-50. Levander, O. A., Morris, V. C. & Moser, P. B. (1981).
- Levander, O. A., Morris, V. C. & Moser, P. B. (1981). Dietary selenium (Se) intake and Se content of breast milk and plasma of lactating and nonlactating women. *Fed. Proc.*, 40, 890.
- Levander, O. A., Moser, P. B. & Morris, V. C. (1987). Dietary selenium intake and selenium concentrations of plasma, erythrocytes, and breast milk in pregnant and postpartum lactating and nonlactating women. Am. J. Clin. Nutr., 46, 694-8.
- Litov, R. E., Sickles, V. S., Chan, G. M., Hargett, I. R. & Cordano, A. (1989). Selenium status in term infants fed human milk or infant formula with or without added selenium. *Nutr. Res.*, 9, 585–96.
- Lombeck, I., Kasperek, K., Harbisch, H. D., Feinendegen, L. E. & Bremer, H. J. (1977). The selenium state of healthy children. I. Serum selenium concentration at different ages; activity of glutathione peroxidase of erythrocytes at different ages; selenium content of food of infants. *Eur. J. Pediatr.*, 125, 81–8.
- Lombeck, I., Kasperek, K., Bonnermann, B., Feinendegen, L. E. & Bremer, H. J. (1978). Selenium content of human milk, cow's milk and cow's milk infant formulas. *Eur. J. Pediatr.*, 129, 139–45.
- Lombeck, I., Kasperek, K., Bachmann, D., Feinendegen, L. E. & Bremer, H. J. (1980). Selenium requirements in patients with inborn errors of amino acid metabolism and selenium deficiency. *Eur. J. Pediatr.*, 134, 65–8.
- Long, S. & Yu, P. (1986). Determination of arsenic and selenium in human urine and blood samples by application of an improved arsenic analyser unit with hydride generation for AAS. *Guangpuxue Yu Guangpu Fenxi*, **6**, 62–6.
- Macpherson, A. K., Sampson, B. & Diplock, A. T. (1988). Comparison of methods for the determination of selenium in biological fluids. *Analyst (London)*, **113**, 281-3.
- Maddipati, K. R. & Marnett, L. J. (1987). Characterization of the major hydroperoxide reducing activity of human plasma: Purification and properties of selenium dependent glutathione peroxidase. J. Biol. Chem., 262, 17398–403.
- Mangels, A. R., Moser-Veillon, P. B., Patterson, K. Y. & Veillon, C. (1990). Selenium utilization during human lactation by use of stable-isotope tracers. Am. J. Clin. Nutr., 52, 621-7.
- Mannan, S. & Picciano, M. F. (1987). Influence of maternal selenium status on human milk selenium concentration and glutathione peroxidase activity. Am. J. Clin. Nutr., 46, 95-100.
- Matusiewicz, H., Sturgeon, R. E. & Berman, S. S. (1991). Vapour-phase acid digestion of inorganic and organic matrices for trace element analysis using a microwave heated bomb. J. Anal. At. Spectrom., 6, 283-7.
- Maus, R. W., Martz, F. A., Belyea, R. L. & Weiss, M. F. (1980). Relationship of dietary selenium to selenium in plasma and milk from dairy cows. J. Dairy Sci., 63, 532-7.

- McCarthy, T. P., Brodie, B., Milner, J. A. & Bevill, R. F. (1981). Improved method for selenium determination in biological samples by gas chromatography. J. Chromatogr., 225, 9–16.
- McKenzie, R. L., Rea, H. M., Thomson, C. D. & Robinson, M. F. (1978). Selenium concentration and glutathione peroxidase activity in blood of New Zealand infants and children. Am. J. Clin. Nutr., 31, 1413–18.
- McMaster, D., Bell, N., Anderson, P. & Love, A. H. G, (1990), Automated measurement of two indicators of human selenium status, and applicability to population studies. *Clin. Chem.*, 36, 211–16.
- Michie, N. D., Dixon, E. J. & Bunton, N. G. (1978). Critical review of AOAC fluorometric method for determining selenium in foods. J. Assoc. Off. Anal. Chem., 61, 48-51.
- Millar, K. R., Sheppard, A. D. (1972). ∝-Tocopherol and selenium levels in human and cow's milk. *N. Zealand Sci.*, **15**, 3–15.
- Milner, J. A., Sherman, L. & Picciano, N. F. (1987). Distribution of selenium in human milk. Am. J. Clin. Nutr., 45, 617–24.
- Morris, V. C. & Levander, O. A. (1970). Selenium content of foods. J. Nutr., 100, 1383–8.
- Moxon, A. L. (1981). Selenium deficiency in cattle. S. Afr. J. Anim. Sci., 11, 183.
- Munehiro, Y., Yasumoto, K., Iwami, K. & Tashiro, H. (1981). Distribution of selenium in bovine milk and selenium deficiency in rats fed casein-based diets, monitored by lipid peroxide level and glutathione peroxidase activity. *Agric. Biol. Chem.*, **45**, 1681.
- Negretti de Brätter, V. E., Brätter, P. & Tomiak, A. (1990). An automated microtechnique for selenium determination in human body fluids by flow injection hydride atomic absorption spectrometry (FI-HAAS). J Trace Elem. Electrolytes Health Dis., 4, 41-8.
- Nêve, J., Hanocq, M. & Molle, L. (1980). Critical study of some wet digestion methods for decomposition of biological materials for the determination of total selenium and selenium (IV). *Mikrochim. Acta*, I, 259–69.
- Nêve, J., Hanocq, M., Molle, L. & Lefebvre, G. (1982). Study of some systematic errors during the determination of the total selenium and some of its ionic species in biological materials. *Analyst (London)*, **107**, 934-41.
- Norheim, G., Saeed, K. & Thomassen, Y. (1983). Matrix modification of Se-diaminonaphthalene with organometallic reagents for electrothermal atomic absorption spectrometric determination of selenium in biological matrices. At. Spectroscopy, 4, 99–100.
- Olson, O. E. & Palmer, I. S. (1984). Selenium in foods purchased or produced in South Dakota. J. Food Sci., 49, 446-52.
- Olson, O. E., Palmer, I. S. & Cary, E. E. (1975). Modification of the official fluorometric method for selenium in plants. J. Assoc. Off. Anal. Chem., 58, 117-21.
- Osama, S., Ohbayashi, T. & Ichijo, S. (1992). Vitamin A, E and selenium levels in blood and milk of dairy cows with acute mastitis. *Nippon Juishikai Zasshi*, **45**, 388–93.
- Oster, O. & Prellwitz, W. (1982). A methodological comparison of hydride and carbon furnace atomic absorption spectroscopy for the determination of selenium in serum. *Clin. Chim. Acta*, **124**, 277–91.
- Oster, O. & Prellwitz, W. (1990). Selenium and cardiovascular disease. *Biol. Trace Elem. Res.*, 24, 91-103.
- Oster, O., Schmiedel, G. & Prellwitz, W. (1986). Comparison of the selenium content of infant foods. *Fortschr. Atomspektrom. Spurenanal.*, **2**, 409–17.
- Parr, R. M. (1978). Protocol for washing breasts and use of the milk collection vessels. IAEA/WHO joint research programme on trace elements in hurran milk.
- Perry, T. W., Peterson, R. C. & Beeson, W. M. (1977). Selenium in milk from feeding small supplements. J. Dairy Sci., 60, 1698-700.

- Peters, H. J. & Koehler, H. (1982). Fluorometric determination of selenium in biological materials. Zentralbl. Pharm. Pharmakother. Laboratoriumsdiagn., 121, 127-9.
- Pettersson, J. & Olin, A. (1991). The rate of reduction of selenium (VI) to selenium (IV) in hydrochloric acid. *Talanta*, 38, 413–17.
- Pettersson, J., Hansson, L., Örnemark, U. & Olin, A. (1988). Fluorimetry of selenium in body fluids after digestion with nitric acid, magnesium nitrate hexahydrate, and hydrochloric acid. *Clin. Chem.*, 34, 1908–10.
- Picciano, M. F. (1985). Trace elements in human milk and infant formula. In *Trace Elements in Nutrition of Children*, ed. R. K. Chandra. Raven Press, New York, pp. 157– 69.
- Polkowska-Motrenko, H., Dermelj, M., Byrne, A. R., Fajgelj, A., Stegnar, P. & Kosta, L. (1982). Radiochemical neutron-activation analysis of selenium using carbamate extraction. *Radiochem. Radioanal. Lett.*, 53, 319–28.
- Reamer, D. C. & Veillon, C. (1983). Elimination of perchloric acid in digestion of biological fluids for fluorometric determination of selenium. *Anal. Chem.*, 55, 1605–6.
- Reynolds, R. D., Acharya, S., Leklem, J. E. & Moser, P. B. (1986). Effects of low maternal dietary intake of calcium, selenium, and vitamin B-6 upon breast milk composition in Nepal. Human Lactation 2, *Proceedings of the International* Workshop Matern. Environ. Factors in Human Lactation, pp. 205-13.
- Ringstad, J. & Thelle, D. (1986). Risk of myocardial infarction in relation to serum concentrations of selenium. Acta Pharmacol. Toxicol., 59, 336–9.
- Robberecht, H., Roekens, E., Van Caillie-Bertrand, M., Deelstra, H. & Clara, R. (1985). Longitudinal study of the selenium content in human breast milk in Belgium. Acta Paediatr. Scand., 74, 254–8.
- Robbins, W. B. & Caruso, J. A. (1979). Determination of germanium, arsenic, selenium, tin and antimony in complex samples by hydride generation-microwave-induced plasma atomic-emission spectrometry. *Analyst (London)*, 104, 35-40.
- Roekens, E., Robberecht, H., Van Caillie-Bertrand, M., Deelstra, H. & Clara, R. (1985). Daily intake of selenium by bottle-fed infants in Belgium. *Eur. J. Pediatr.*, 144, 45–8.
- Sakurai, H. & Tsuchiya, K. (1975). A tentative recommendation for the maximum daily intake of selenium. *Environ. Physiol. Biochem.*, 5, 107–18.
- Sando, K. (1989). Selenium (Se) status in long-term total parenteral nutrition (TPN). Geka to Taisha, 23, 225-38.
- Sarudi, I., Lassu-Merenyi, Z. & Nagy, I. (1989). Effect of mastitis on the selenium content of cow milk. *Milch-wissenschaft*, 44, 11-12.
- Schlemmer, G. & Welz, B. (1986). Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry. Spectrochim. Acta, 41B, 1157-65.
- Shearer, T. R. & Hadjimarkos, D. M. (1975). Geographic distribution of selenium in human milk. Arch. Environ. Health, 30, 230–3.
- Shimoishi, Y. (1976). The gas-chromatographic determination of selenium (VI) and total selenium in milk, milk products and albumin with 1,2-diamino-4-nitrobenzene. *Analyst (London)*, **101**, 298-305.
- Singh, M. & Sawant, A. D. (1987). Neutron activation and radiochemical separation of selenium from environmental and food samples from and around Bombay using ethyl- α -isonitrosoacetoacetate. J. Radioanal. Nucl. Chem., 114, 83–8.
- Smith, A. M. & Picciano, M. F. (1986). Evidence for increased selenium requirement for the rat during pregnancy and lactation. J. Nutr., 116, 1068–79.
- Smith, A. M., Picciano, M. F. & Milner, J. A. (1982). Selenium intakes and status of human milk and formula fed infants. Am. J. Clin. Nutr., 35, 521-6.

- Stijve, T. & Philippossian, G. (1978). Dosage de faibles concentrations de sélénium dans différents substrats par chromatographie en phase gazeuse. Trav. chim. aliment. hyg., 69, 74-84.
- Takahashi, K., Avissar, N., Whitin, J. & Cohen, H. J. (1987). Purification and characterization of human plasma glutathione peroxidase: A selenoglycoprotein distinct from known cellular enzyme. Arch. Biochem. Biophys., 256, 677-86.
- Takahashi, K., Akasaka, M., Yamamoto, Y., Kobayashi, C., Mizoguchi, J. & Koyama, J. (1990). Primary structure of human plasma glutathione peroxidase deduced from cDNA sequences. J. Biochem., 108, 145–8.
- Tamari, Y., Nishimura, Y., Tsuji, H. & Kusaka, Y. (1990). Selenium content of breast milk and cow's milk. *Biomed. Res. Trace Elem.*, 1, 103–4.
- Tamari, Y., Murakami, M., Tsuji, H. & Kusaka, Y. (1991). Selenium content of breast and formula milk and selenium intake of infants. *Biomed. Res. Trace Elem.*, 2, 123–4.
- Tamari, Y., Murakami, M., Nishimura, Y., Tsuji, H. & Kusaka, Y. (1992). Selenium intake for infants inmediately after delivery. *Phosphorus, Sulfur Silicon Relat. Elem.*, 67, 445-8.
- Thompson, J. N., Erdy, P. & Smith, D. C. (1975). Selenium content of food consumed by Canadians. J. Nutr., 105, 274-7.
- Tiran, B., Tiran, A., Petek, W., Rossipal, E. & Wawschinek, O. (1992). Selenium status of healthy children and adults in Styria (Austria). Investigation of a possible undersupply in the Styrian population. *Trace Elem. Med.*, 9, 75–9.
- Tôei, K. & Shimoishi, Y. (1981). Determination of ultramicro amounts of selenium by gas chromatography with electroncapture detection. *Talanta*, 28, 967–72.
- Uchida, H., Shimoishi, Y., Tôei, K. (1981). Rapid determination of trace amounts of selenium in biological samples by gas chromatography with electron-capture detection. *Analyst (London)*, **106**, 757–62.
- Van Dael, P. & Deelstra, H. (1989). Speciation of selenium in bovine whey. *The Proceedings of Bioavailability*, **72**, 112–15.
- Van Dael, P., Vlaemynck, G., Van Renterghem, R. & Deelstra, H. (1991). Selenium content of cow's milk and its distribution in protein fractions. Z. Lebensm. Unters. Forsch., 192, 422-6.
- Varo, P. & Koivistoinen, P. (1981). Annual variations in the average selenium intake in Finland: Cereal products and milk as sources of selenium in 1979–80. *Internat. J. Vit. Nutr. Res.*, 51, 79–84.
- Varo, P., Nuurtamo, M. & Koivistoinen, P. (1984). Selenium content of nonfat dry milk in various countries. J. Dairy Sci., 67, 2071–4.
- Verlinden, M., Deelstra, H., Adriaenssens, E. (1981). The determination of selenium by atomic-absorption spectrometry: A review. *Talanta*, 28, 637–46.
- Vézina, D. & Bleau, G. (1988). High-performance liquid chromatography of selenium in biological samples. J. Chromatogr., 426, 385–91.
- Virtamo, J., Valkeila, E., Alfthan, G., Punsar, S., Huttunen, J. K. & Karvonen, M. J. (1985). Serum selenium and the risk of coronary heart disease and stroke. Am. J. Epidemiol., 122, 276–82.
- Vuori, E. & Kuitunen, P. (1979). The concentration of copper and zinc in human milk. A longitudinal study. Acta Pediatr. Scand., 68, 33-7.
- Watkinson, J. H. (1966). Fluorometric determination of selenium in biological material with 2,3-diaminonaphthalene. Anal. Chem., 38, 92-7.
- Watkinson, J. H. (1974). The selenium status of New Zealanders. N.Z. Med. J., 523, 202-5.
- Welz, B., Melcher, M. & Schlemmer, G. (1983). Determination of selenium in human blood serum. Comparison of two atomic-absorption spectrometric procedures. *Fresenius'* Z. Anal. Chem., 316, 271-6.

- Wilber, C. (1980). Toxicology of selenium: A review. Clin. Toxicol., 17, 171-230.
- Williams, M. M. F. (1983). Selenium and glutathione peroxidase in mature human milk. Proc. Univ. Otago Med. Sch., 61, 20-1.
- Woittiez, J. R. W. & Nieuwendijk, B. J. T. (1987). Analysis of selenium in environmental and biological samples by neutron activation. J. Radioanal. Nucl. Chem., 110, 603–11.
- Yang, G., Zhou, R. & Yin, S. (1989). Studies of safe maximal daily dietary selenium intake in a seleniferous area in China. I. Selenium intake and tissue selenium levels of the inhabitants. J. Trace Elem. Electrolytes Health Dis., 3, 77–87.
- Yoshida, Y., Yasumoto, K., Insami, K. & Tashiro, H. (1981). Distribution of selenium in bovine milk and selenium deficiency in rats fed casein-based diets, monitored by lipid

peroxide level and glutathione peroxidase activity. Agric. Biol. Chem., 45, 1681-8.

- Yoshinaga, J., Li, J. & Suzuki, T. (1991). Trace elements in human transitory milk: Variation caused by biological attributes of mother and infant. *Biol. Trace Elem. Res.*, 31, 159-70.
- Yu, S., Chu, Y. & Gong, X. (1985). Regional variation of cancer mortality incidence and its relation to selenium levels in China. *Biol. Trace Elem. Res.*, 7, 21–9.
- Yuzo, T. & Mohri, T. (1991). Trace components of human breast milk. Selenium. Mem. Konon Univ., Sci. Ser., 38, 115–22.
- Zabel, N. L., Harland, J., Gormican, A. T. & Ganther, H. E. (1978). Selenium content of commercial formula diets. Am. J. Clin. Nutr., 31, 850–8.